Part Number Hot Search : 
12008 SST25 2SB775 SM65P 2SK18 CMSTZBU SY100 DEVICES
Product Description
Full Text Search
 

To Download ADR364AUJZ-REEL7 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Low Power, Low Noise Voltage References with Sink/Source Capability ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
FEATURES
Compact TSOT-23-5 packages Low temperature coefficient B grade: 9 ppm/C A grade: 25 ppm/C Initial accuracy B grade: 3 mV maximum A grade: 6 mV maximum Ultralow output noise: 6.8 V p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current: 190 A maximum No external capacitor required Output current: +5 mA/-1 mA Wide temperature range: -40C to +125C
PIN CONFIGURATION
NC 1
ADR36x
5
TRIM
TOP VIEW GND 2 (Not to Scale)
05467-001
VIN 3
4
VOUT
NC = NO CONNECT
Figure 1. 5-Lead TSOT (UJ Suffix)
Table 1.
Model ADR360B ADR360A ADR361B ADR361A ADR363B ADR363A ADR364B ADR364A ADR365B ADR365A ADR366B ADR366A
1
APPLICATIONS
Battery-powered instrumentations Portable medical instrumentations Data acquisition systems Industrial process controls Automotive
VOUT (V) 1 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3
Temperature Coefficient (ppm/C) 9 25 9 25 9 25 9 25 9 25 9 25
Accuracy (mV) 3 6 3 6 3 6 4 8 4 8 4 8
Contact Analog Devices, Inc. for other voltage options.
GENERAL DESCRIPTION
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band gap voltage references that feature low power, high precision in tiny footprints. Using Analog Devices' patented temperature drift curvature correction techniques, the ADR36x references achieve a low temperature drift of 9 ppm/C in the TSOT package. The ADR36x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR36x precision voltage references ideally suited for battery-operated applications.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Pin Configuration............................................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 ADR360--Specifications ................................................................. 3 ADR361--Specifications ................................................................. 4 ADR363--Specifications ................................................................. 5 ADR364--Specifications ................................................................. 6 ADR365--Specifications ................................................................. 7 ADR366--Specifications ................................................................. 8 Absolute Maximum Ratings............................................................ 9 Thermal Resistance .......................................................................9 ESD Caution...................................................................................9 Terminology .................................................................................... 10 Typical Performance Characteristics ........................................... 11 Theory of Operation ...................................................................... 16 Device Power Dissipation Considerations.............................. 16 Input Capacitor........................................................................... 16 Output Capacitor........................................................................ 16 Applications..................................................................................... 17 Basic Voltage Reference Connection ....................................... 17 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19
REVISION HISTORY
3/06--Rev. 0 to Rev. A Changes to Figure 15 Caption....................................................... 13 Changes to Figure 21 Caption....................................................... 14 Changes to Theory of Operation Section.....................................16 Changes to Figure 36.......................................................................18 4/05--Revision 0: Initial Version
Rev. A | Page 2 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR360--SPECIFICATIONS
Electrical Characteristics (VIN = 2.35 V to 15 V, TA = 25C, unless otherwise noted.) Table 2.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 2.45 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 3 V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 3 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.042 2.045 Typ 2.048 2.048 Max 2.054 2.051 6 0.29 3 0.15 25 9 0.105 0.37 0.82 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 6.8 25 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 3 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR361--SPECIFICATIONS
Electrical Characteristics (VIN = 2.8 V to 15 V, TA = 25C, unless otherwise noted.) Table 3.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 2.8 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 3.5 V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 3.5 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.494 2.497 Typ 2.500 2.500 Max 2.506 2.503 6 0.24 3 0.12 25 9 0.125 0.45 1 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 8.25 25 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 4 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR363--SPECIFICATIONS
Electrical Characteristics (VIN = 3.3 V to 15 V, TA = 25C, unless otherwise noted.) Table 4.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 3.3 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 4 V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 4 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 2.994 2.997 Typ 3.000 3.000 Max 3.006 3.003 6 0.2 3 0.1 25 9 0.15 0.54 1.2 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 8.7 25 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 5 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR364--SPECIFICATIONS
Electrical Characteristics (VIN = 4.4 V to 15 V, TA = 25C, unless otherwise noted.) Table 5.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 4.4 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 5 V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 5 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 4.088 4.092 Typ 4.096 4.096 Max 4.104 4.100 8 0.2 4 0.1 25 9 0.205 0.735 1.75 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 11 25 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 6 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR365--SPECIFICATIONS
Electrical Characteristics (VIN = 5.3 V to 15 V, TA = 25C, unless otherwise noted.) Table 6.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 5.3 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 6V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 6 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 4.992 4.996 Typ 5.000 5.000 Max 5.008 5.004 8 0.16 4 0.08 25 9 0.25 0.9 2 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 12.8 20 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 7 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR366--SPECIFICATIONS
Electrical Characteristics (VIN = 3.6 V to 15 V, TA = 25C, unless otherwise noted.) Table 7.
Parameter OUTPUT VOLTAGE INITIAL ACCURACY Symbol VO VOERR Conditions A Grade B Grade A Grade A Grade B Grade B Grade A Grade, -40C < TA < +125C B Grade, -40C < TA < +125C VIN = 3.6 V to 15 V, -40C < TA < +125C ILOAD = 0 mA to 5 mA, -40C < TA < +125C, VIN = 4.2 V ILOAD = -1 mA to 0 mA, -40C < TA < +125C, VIN = 4.2 V -40C < TA < +125C 0.1 Hz to 10 Hz 1,000 hours fIN = 60 kHz VIN = 5 V VIN = 15 V Min 3.292 3.296 Typ 3.300 3.300 Max 3.308 3.304 8 0.25 4 0.125 25 9 0.165 0.6 1.35 190 Unit V V mV % mV % ppm/C ppm/C mV mV/V mV/mA mV/mA A V p-p s ppm ppm dB mA mA
TEMPERATURE COEFFICIENT SUPPLY VOLTAGE HEADROOM LINE REGULATION LOAD REGULATION QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND
TCVO VIN - VO VO/VIN VO/ILOAD IIN eN p-p tR VO VO_HYS RRR ISC
300
150 9.3 25 50 100 70 25 30
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.
Rev. A | Page 8 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ABSOLUTE MAXIMUM RATINGS
TA = 25C, unless otherwise noted. Table 8.
Parameter Supply Voltage Output Short-Circuit Duration to GND VIN < 15 V VIN > 15 V Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V Indefinite 10 sec -65C to +125C -40C to +125C -65C to +125C 300C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 9. Thermal Resistance
Package Type TSOT-23-5 (UJ-5) JA 230 JC 146 Unit C/W
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. A | Page 9 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TERMINOLOGY
Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25C. This parameter is expressed in ppm/C and can be determined by
TCVO [ppm/C] = VO (T2 ) - VO (T1 ) x 106 VO (25C ) x (T2 - T1 )
Long-Term Stability Typical shift of output voltage at 25C on a sample of parts subjected to a test of 1,000 hours at 25C.
VO = VO (t 0 ) - VO (t1 ) V (t )-VO (t1 ) VO [ppm ] = O 0 x 106 VO (t 0 )
where: VO (25C) = VO at 25C. VO (T1) = VO at Temperature 1. VO (T2) = VO at Temperature 2. Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance.
where: VO (t0) = VO at 25C at Time 0. VO (t1) = VO at 25C after 1,000 hours operation at 25C. Thermal Hysteresis The change of output voltage after the device is cycled through temperature from +25C to -40C to +125C and back to +25C. This is a typical value from a sample of parts put through such a cycle.
VO _ HYS = VO (25C ) - VO _ TC
VO _ HYS [ppm ] = where: VO (25C) = VO at 25C. VO_TC = VO at 25C after temperature cycle at +25C to -40C to +125C and back to +25C. VO (25C ) - VO _ TC VO (25C ) x 106
Rev. A | Page 10 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TYPICAL PERFORMANCE CHARACTERISTICS
2.052
4.998 4.997
2.050
4.996 4.995
VOUT (V)
VOUT (V)
05467-002
2.048
4.994 4.993
2.046
4.992
05467-005
4.991 4.990 -40
2.044 -40
-20
0
20
40
60
80
100
120
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 2. ADR360 Output Voltage vs. Temperature
2.504
0.165
Figure 5. ADR365 Output Voltage vs. Temperature
2.502
0.155
+125C
IDD (mA)
VOUT (V)
2.500
0.145 +25C 0.135 -40C
2.498
2.496
05467-003
0.125
05467-006
2.494 -40
-25
-10
5
20
35
50
65
80
95
110
125
0.115 2.8
4.1
5.3
6.6
7.8
9.1 VIN (V)
10.3
11.6
12.8
14.1
TEMPERATURE (C)
Figure 3. ADR361 Output Voltage vs. Temperature
3.003 3.002 3.001
Figure 6. ADR361 Supply Current vs. Input Voltage
0.17
+125C 0.16
IDD (mA)
VOUT (V)
3.000 2.999 2.998 2.997 2.996 -40
+25C
0.15
-40C
05467-004
-20
0
20
40
60
80
100
120
0.14 5.3
6.3
7.3
8.3
9.3
10.3 VIN (V)
11.3
12.3
13.3
14.3
TEMPERATURE (C)
Figure 4. ADR363 Output Voltage vs. Temperature
Figure 7. ADR365 Supply Current vs. Input Voltage
Rev. A | Page 11 of 20
05467-007
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
0.18 0.16 9 8
LOAD REGULATION (mV/mA)
0.12 0.10 0.08 0.06 0.04
05467-036
LINE REGULATION (ppm/V)
0.14
7 6 5 4 3 2
05467-009
VIN = 9V
VIN = 3.5V
0.02 0 -40
1 0 -40
-25
-10
5
20
35
50
65
80
95
110
125
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 8. ADR361 Load Regulation vs. Temperature
0.14 0.12
Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V
12
10 VIN = 9V
LOAD REGULATION (mV/mA)
0.10 0.08 0.06 0.04 0.02 0 -40
LINE REGULATION (ppm/V)
8
6
VIN = 6V
4
2
05467-037 05467-010
-25
-10
5
20
35
50
65
80
95
110
125
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
Figure 9. ADR365 Load Regulation vs. Temperature
25
Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V
1.6 1.4
DIFFERENTIAL VOLTAGE (V)
20
+125C 1.2 1.0 0.8 0.6 0.4
05467-011
LINE REGULATION (ppm/V)
15
10
-40C +25C
5
05467-008
0.2 0 -2
0 -40
-20
0
20
40
60
80
100
120
0
2
4
6
8
10
TEMPERATURE (C)
LOAD CURRENT (mA)
Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V
Figure 13. ADR361 Minimum Input Voltage vs. Load Current
Rev. A | Page 12 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
1.8 1.6
XX
DIFFERENTIAL VOLTAGE (V)
1.4 1.2 1.0 0.8 0.6 0.4 +25C
+125C
XX
2V/DIV
05467-012
-40C 0 2 4 6 8 10
0 -2
XX
LOAD CURRENT (mA)
Figure 14. ADR365 Minimum Input Voltage vs. Load Current
XX
Figure 17. ADR363 0.1 Hz to 10 kHz Noise
XX
XX
2V/DIV
XX
50V/DIV
05467-013
TIME = 1s/DIV XX
XX
Figure 15. ADR361 0.1 Hz to 10 Hz Noise
XX XX
Figure 18. ADR363 10 Hz to 10 kHz Noise
XX
XX
2V/DIV
05467-014
50V/DIV XX
TIME = 1s/DIV
XX
Figure 16. ADR361 10 Hz to 10 kHz Noise
Figure 19. ADR365 0.1 Hz to 10 Hz Noise
Rev. A | Page 13 of 20
05467-017
TIME = 1s/DIV
05467-016
TIME = 1s/DIV
05467-015
0.2
TIME = 1s/DIV
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
XX XX 500mV/DIV VIN
XX
XX
VOUT 100V/DIV
05467-018
500mV/DIV
4s/DIV XX
XX
Figure 20. ADR365 10 Hz to 10 kHz Noise
50 45 40
Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors
XX VIN 500mV/DIV
OUTPUT IMPEDANCE ()
35 30 25 20 15 10
05467-031
XX
VOUT
500mV/DIV
5 0 100 1k 10k FREQUENCY (Hz)
10s/DIV XX
100k
Figure 21. Output Impedance vs. Frequency
10 0 -10
Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors
XX 500mV/DIV VIN
RIPPLE REJECTION (dB)
-20 -30 -40 -50 -60 -70 -80 -90 100 1k 10k FREQUENCY (Hz) 100k 1M
05467-030
XX
VOUT
20mV/DIV
100s/DIV XX
Figure 22. Ripple Rejection Ratio
Figure 25. ADR361 Line Transient Response, 0.1 F Input Capacitor
Rev. A | Page 14 of 20
05467-021
05467-020
05467-019
TIME = 1s/DIV
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
XX LOAD OFF LOAD ON
XX 5V/DIV INPUT
XX
VOUT
100mV/DIV
XX
2.5V/DIV
05467-032
OUTPUT 400ns/DIV
05467-023 05467-035 05467-034
2ms/DIV XX
XX
Figure 26. ADR361 Load Transient Response
XX LOAD ON XX
Figure 29. ADR361 Turn-Off Response at 5 V
VIN 5V/DIV
VOUT
XX
VOUT
100mV/DIV
XX
2V/DIV
100s/DIV XX
05467-033
100s/DIV XX
Figure 27. ADR361 Load Transient Response, 0.1 F Input, Output Capacitor
XX
Figure 30. ADR361 Turn-On Response, 0.1 F Output Capacitor
XX
VIN
5V/DIV
INPUT
5V/DIV
VOUT
XX
XX
2V/DIV
2.5V/DIV
OUTPUT
05467-022
10s/DIV XX
2ms/DIV XX
Figure 28. ADR361 Turn-On Response Time at 5 V
Figure 31. ADR361 Turn-Off Response, 0.1 F Output Capacitor
Rev. A | Page 15 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 THEORY OF OPERATION
Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR36x family is no exception. The uniqueness of these products lies in their architecture. The ideal zero TC band gap voltage is referenced to the output not to ground (see Figure 32). Therefore, if noise exists on the ground line, it is greatly attenuated on VOUT. The band gap cell consists of the PNP pair Q53 and Q52 running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of
DEVICE POWER DISSIPATION CONSIDERATIONS
The ADR36x family is capable of delivering load currents to 5 mA with an input voltage ranging from 2.348 V (ADR360 only) to 18 V. When this device is used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. Use the following formula to calculate a device's maximum junction temperature or dissipation:
PD = TJ - TA JA
2x
R59 R54
This PTAT voltage, combined with the VBEs of Q53 and Q52, produces the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance.
Q2 Q1
VOUT (FORCE)
In this equation, TJ and TA are, respectively, the junction and ambient temperatures, PD is the device power dissipation, and JA is the device package thermal resistance.
INPUT CAPACITOR
Input capacitors are not required on the ADR36x. There is no limit for the value of the capacitor used on the input, but a 1 F to 10 F capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 F capacitor in parallel also helps reduce noise from the supply.
OUTPUT CAPACITOR
R59 R44
R100
VOUT (SENSE)
R54
R58
Q61
Q60
R49 62k
Q53
R53
Q52
R50 30k
TRIM
R101
R48
05467-024
R60
R61
Figure 32. Simplified Schematic
The ADR36x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 F, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 F to 10 F output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time. The degradation depends on the size of the capacitor chosen.
Rev. A | Page 16 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 APPLICATIONS
BASIC VOLTAGE REFERENCE CONNECTION
The circuit in Figure 33 illustrates the basic configuration for the ADR36x family. Decoupling capacitors are not required for circuit stability. The ADR36x family is capable of driving capacitive loads from 0 F to 10 F. However, a 0.1 F ceramic output capacitor is recommended to absorb and deliver the charge as is required by a dynamic load. Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 10). For example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and VOUT2 is 5.0 V.
Table 10. Output
1
NC
TRIM 5
ADR36x
2
GND
U1/U2 ADR361/ADR365 ADR361/ADR361 ADR365/ADR361
OUTPUT
05467-025
VOUT1 2.5 2.5 5
VOUT2 7.5 5.0 7.5
INPUT 0.1F
3
VIN
VOUT 4
0.1F
A Negative Precision Reference Without Precision Resistors
A negative reference is easily generated by adding an op amp, A1 and is configured in Figure 35. VOUTF and VOUTS are at virtual ground and, therefore, the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
1
Figure 33. Basic Configuration for the ADR36x Family
Stacking Reference ICs for Arbitrary Outputs
Some applications can require two reference voltage sources, which are a combined sum of standard outputs. Figure 34 shows how this stacked output reference can be implemented.
1
NC GND VIN
TRIM 5
2
ADR36x
VOUT 4 VOUT2
NC
TRIM 5
ADR36x
2
VIN
3
GND
C2 0.1F
+VDD
3
VIN
VOUT 4
1
C1 0.1F
2
NC GND VIN
TRIM 5
ADR36x
VOUT 4 VOUT1
05467-026
-VREF
- +
05467-027
3
Figure 34. Stacking Voltage References with the ADR36x
-VDD
Figure 35. Negative Reference
Rev. A | Page 17 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
General-Purpose Current Source
Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR36x can be configured as a precision current source (see Figure 36). The circuit configuration illustrated is a floating current source with a grounded load. The reference's output voltage is bootstrapped across RSET, which sets the output current into the load. With this configuration, circuit precision is maintained for load currents ranging from the reference's supply current, typically 150 A, to approximately 5 mA.
1
Trim Terminal
The ADR36x trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustment and can be omitted if desired. The resistor values should be carefully chosen to ensure that the maximum current drive of the part is not exceeded.
R2 1k R1 100k
NC GND VIN
TRIM 5
1
NC
TRIM 5
POT 10k
ADR36x
2
2
ADR36x
GND VOUT
05467-029
+VDD
3
VOUT 4 R1 RSET ISET
+VDD
3
VIN
VOUT 4
ISY
P1
Figure 37. ADR36x Trim Configuration
Figure 36. Precision Current Source
05467-028
RL
ISET + ISY
Rev. A | Page 18 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 OUTLINE DIMENSIONS
2.90 BSC
5 4
1.60 BSC
1 2 3
2.80 BSC
PIN 1 0.95 BSC *0.90 0.87 0.84 1.90 BSC
*1.00 MAX
0.20 0.08 8 4 0 0.60 0.45 0.30
0.10 MAX
0.50 0.30
SEATING PLANE
*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters
ORDERING GUIDE
Models 1 ADR360AUJZ-REEL7 2 ADR360BUJZ-REEL72 ADR361AUJZ-REEL72 ADR361BUJZ-REEL72 ADR363AUJZ-REEL72 ADR363BUJZ-REEL72 ADR364AUJZ-REEL72 ADR364BUJZ-REEL72 ADR365AUJZ-REEL72 ADR365BUJZ-REEL72 ADR366AUJZ-REEL72 ADR366BUJZ-REEL72
1 2
Output Voltage (VO) 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3
Initial Accuracy (mV) (%) 6 0.29 3 0.15 6 0.24 3 0.12 6 0.2 3 0.1 8 0.2 4 0.1 8 0.16 4 0.08 8 0.25 4 0.125
Temperature Coefficient (ppm/C) 25 9 25 9 25 9 25 9 25 9 25 9
Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT
Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Branding R0C R0D R0E R0F R0G R0H R0J R0K R0L R0M R08 R09
3,000 pieces per reel. Z = Pb-free part.
Rev. 0 | Page 19 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 NOTES
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-3/06(A)
Rev. A | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of ADR364AUJZ-REEL7

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X